Complex manifolds of Sobolev mappings and a Hartogs-type theorem in loop spaces
نویسندگان
چکیده
We recall the complex structure on generalized loop spaces Wk,2(S,X), where S is a compact real manifold with boundary and X manifold, prove Hartogs-type extension theorem for holomorphic maps from certain domains in spaces.
منابع مشابه
A General Version of the Hartogs Extension Theorem for Separately Holomorphic Mappings between Complex Analytic Spaces
Using recent development in Poletsky theory of discs, we prove the following result: Let X, Y be two complex manifolds, let Z be a complex analytic space which possesses the Hartogs extension property, let A (resp. B) be a non locally pluripolar subset of X (resp. Y ). We show that every separately holomorphic mapping f : W := (A × Y ) ∪ (X × B) −→ Z extends to a holomorphic mapping f̂ on Ŵ := {...
متن کاملSard’s theorem for mappings in Hölder and Sobolev spaces
We prove various generalizations of classical Sard’s theorem to mappings f : M → N between manifolds in Hölder and Sobolev classes. It turns out that if f ∈ C(M,N), then—for arbitrary k and λ—one can obtain estimates of the Hausdorff measure of the set of critical points in a typical level set f−1(y). The classical theorem of Sard holds true for f ∈ C with sufficiently large k, i.e., k > max(m−...
متن کاملA Haar-rado Type Theorem for Minimizers in Sobolev Spaces
Let ω : [0,+∞[→ [0,+∞[ be a modulus of continuity. Consider the integral functional
متن کاملFIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Variables and Elliptic Equations
سال: 2022
ISSN: ['1747-6941', '1747-6933']
DOI: https://doi.org/10.1080/17476933.2022.2097666